Four Quadrant Metering

Steve Hudson, PE

VP Of Hardware Engineering

10737 Lexington Drive Knoxville, TN 37932

Phone: (865) 966-5856

www.powermetrix.com

Focus of this Presentation

- Review of Watts, VAR, and VA
- Overview of Four Quadrant Metering
- Vector Diagrams in Four Quadrants
- How do you meter four quadrants?
- Examples of sites using four quadrant metering
- Verification of four quadrant sites

Watt, VAR, and VA

Watt - useful power that does real work at the load – light a bulb or turn a motor

VAR – non-useful power that is required to drive the inductance or capacitance of a power line

VA – the total power in the system; the vector sum of Watts and VARs

Watt, VAR, and VA

Inductance in the power transmission line lower power factor and increases VARs!

Four Quadrant Metering

Quadrant	Power Factor	Watts	VARs
1	Lag	Delivered (+)	Delivered (+)
2	Lead	Received (-)	Delivered (+)
3	Lag	Delivered (+)	Received (-)
4	Lead	Received (-)	Received (-)

Four Quadrant Metering

Received VAR, Q-

Delivered power goes from the utility to the customer Received power goes from the customer to the utility

IMPORTANT!

The four quadrants shown in the last slide are NOT the same as a typical vector diagram!

Quadrant 1

Delivered VAR, Q+

Most common quadrantInductive load

Renewable sites with a capacitive load

Quadrant 3

Renewable sites with a inductive load

Light load on a standard site with a capacitor bank

How are 4 quadrants metered?

- Old approach use two meters
- Mechanical meter with detents
- Possible problems with VARhr meters
- Solid state meters can perform true 4 quadrant metering
- Solid state metering can also be used for net energy metering

Net Energy Metering

- Net metering allows a customer to be credited or paid for excess energy generated from renewable resources
- In some cases, net energy is credited at the full energy rate
- States limit the amount of excess energy that can be credited to the customer

Net Energy Example

 Customer consumes 500kWh from the utility at \$0.10/kWh

500kWh * \$0.10/kWh = \$50 due to utility

Customer puts back 100kWh to the utility at \$0.05/kWh

100kWh * \$0.05/kWh = \$5 due to customer

Net bill = 50 - 5 = 45 due to utility

Renewable Metering

- Renewable sites can generate excess energy that can be put back on the grid
- This requires a means to measure power received back on to the electrical grid
- Originally, two meters were used one for power delivered to the customer, and one for received power to the utility
- Modern meters can measure energy flow in both directions – 4 quadrant metering 7

What is a renewable site?

A renewable site can produce its own energy using a resource that is naturally replenished.

Renewable Site Statistics

U.S. energy consumption by energy source, 2016

Note: Sum of components may not equal 100% because of independent rounding.

Source: U.S. Energy Information Administration, *Monthly Energy Review*, Table 1.3 and 10.1, April 2017, preliminary data

Renewable Site Statistics

Renewable electricity generation (Reference case)

billion kilowatthours

Renewable Site Statistics

- Renewable energy accounted for 10% of total power consumption in the US in 2016
- Solar and wind are the largest growing segments in the US and represent the majority of new renewable metering installations. Both segments should double their output in the next 5 years.

Source: www.eia.gov

Case Study #1 East Knox Solar Array

1MW Solar Farm in Knoxville, TN 4608 Panels - Built 2010

Four DC-AC Inverters 8.4kV Transformer

- Local utility monitors energy with one bidirectional form 9S meter
- 200:5 CT's
- 70:1 PT's

- Current vectors are LEADING
- Meter is setup so that positive energy flow is from the solar array to the utility

- Power outputs are well filtered
- Harmonics are >70th harmonic
- Meter should have no problems

P Customer Load Test F	Results Batt [33	02 100%]	Site: SOLAR			
Customer Load Meter Test Registration						
% Registration 99.994						
Test	, Info	Si	us Info			
Time(sec)	113.505	Wh	5.4003			
Time Left	0.000	VAh	5.4814			
Pulses Exp	3.0002	VARh	-0.9389			
Pulses Act	3.0000	V	111.962			
Meter PF	0.9852	Ι	0.5182			

- Customer Load Meter Test has excellent results
- Note NEGATIVE VARh due to leading current

- Overhead CT's are testing using a high voltage current probe to measure primary current
- Pay attention to the polarity of the CT
- Secondary current is available at the meter test switch

CT Testing Results

Batt [3302 90%]

Site: None

А

Measured Ratio: 200.00

Nameplate Ratio: 200 : 5 Ratio Error (%): 0.00% Phase Error (degrees): 0.238°

Primary Amps: 18.93 Secondary Amps: 0.473 Phase Error (minutes): 14' 16"

PASS

Measured Ratio: 200.99

Nameplate Ratio: 200 : 5 Ratio Error (%): 0.49% Phase Error (degrees): 0.014°

PASS B

Primary Amps: 16.99 Secondary Amps: 0.423 Phase Error (minutes): 0' 49"

Measured Ratio: 200.24

Nameplate Ratio: 200 : 5 Ratio Error (%): 0.12% Phase Error (degrees): 0.280°

PASS C

Primary Amps: 16.43 Secondary Amps: 0.410 Phase Error (minutes): 16' 49"

🦻 Capture Burden Measurement 👘 🛛 🛛 🛛 🗛 🗛 😕 🔑 🔑 📴 💦

Site: None

А

В

C

Total Burden (Ohms): 0.1955 Length: Feet: 70.00

Diameter: AWG: 12.00 Wire Burden (Ohms): 0.1112 Volts: 0.03 Amps: 0.3685 Measured Burden (Ohms): 0.0843

Total Burden (Ohms): 0.1504

Length: Feet: 70.00 Diameter: AWG: 12.00 Wire Burden (Ohms): 0.1112

Volts: 0.01 Amps: 0.3597

Volts: 0.02

Measured Burden (Ohms): 0.0393

Total Burden (Ohms): 0.1688

Length: Feet: 70.00 Diameter: AWG: 12.00 Wire Burden (Ohms): 0.1112

Amps: 0.3580 Measured Burden (Ohms): 0.0577

Direct Burden Measurement gives the EXACT burden on the secondary

Case Study #2 Gila River PV Power Plant

87kW Solar Farm at Hu Hu Kam Hospital Sacaton, AZ

Gila River PV Power Plant

- The vector diagram for a renewable site may have current vectors 180° out when the site is generating power.
- Whr, VARhr, and PF may also be negative when generating power.

Gila River PV Power Plant

Voltage and Current Harmonics V THD = 2% I THD = 50 to 60% Square wave current due to inverter

Case Study #3 U-Haul – Kingman, AZ

U-Haul – Kingman, AZ

Power Data

Power Pair	Wh	VAh	VARh
Vab-la	-1.7247	1.7277	-0.0092
Vab-lb	-1.2472	1.2585	0.1411
Sys	-2.9719	2.9749	0.1319

- Single Phase 3 wire Form 4S meter
- Power was being put back on the grid
 Negative Watts
- Meter registration was -100.9%

U-Haul – Kingman, AZ

Power Data

Power Pair	Wh	VAh	VARh
Vab-la	1.6058	1.6137	-0.1320
Vab-lb	1.3897	1.3958	-0.1009
Sys	2.9954	3.0045	-0.2330

- Single Phase 3 wire Form 4S meter
- Power was being delivered to the customer - Positive Watts
- Meter registration was +100.15%

U-Haul – Kingman, AZ

Voltage THD < 3% Current THD < 17% Mostly odd harmonics due to inverter

Renewable Site Verification

- Renewable sites should be tested for energy flow in both directions.
- This will require the use of a load box.
- If the site is not generating power, a phantom load test will be required.
- Always check your CTs and PTs The meter is only as good as the information it receives from the ITs!

Summary

- Wind and solar sites will produce many new metering sites over the next 6 to 20 years
- Four quadrant metering is required for bidirectional energy sites
- Check energy flow in both directions

Questions? Comments? Want a copy of this presentation? Go to

https://www.powermetrix.com/presentations/

Thank you for your time!

