Effects of Power Quality On Metering

Steve Hudson, PE

VP Of Hardware Engineering

10737 Lexington Drive Knoxville, TN 37932

Phone: (865) 966-5856

www.powermetrix.com

Focus of this Presentation

- What is power quality?
- What is a power analyzer and how does it help you improve power quality?
- What are some examples of power quality issues?
- How does power quality affect metering?

What is Power Quality?

- Customer's view of power quality
 - Flickering lights
 - Equipment reset
 - Tripping of breakers
 - Motors or transformers running hot
 - Lightning or other weather related issues

What is Power Quality?

- Utility's view of power quality Deviation from a pure sinusoidal voltage supply at a frequency of 60 Hz (US).
 - Sags, dips, swells
 - Transient voltages
 - Harmonics
 - Voltage Regulation
 - Frequency Variations

What is a Power Analyzer?

- A power analyzer is a device used to measure the components of power:
 - Voltage
 - Current
 - Phase
 - Power Factor
 - Frequency
 - Harmonics

Power Analyzer

- · Measure data over a period of time to establish a trend
- Normally logs data to a PC or may be self-contained
- Used to determine ways to reduce energy usage and find and eliminate power quality issues

- Sags and swells
 - Deviations from normal RMS voltage which last from 0.5 cycle to several seconds
 - Most common power quality issues
 - Very noticeable to customers
 - Often an infrastructure sizing vs load issue
 - Generally not an issue from a metering accuracy point of view

RMS Voltage

- Transient Voltages
 - Very short deviations from the normal sinusoidal voltage "spikes"
 - Sources capacitive switching, lightning
 - Can cause equipment failures both for utility and for customers
 - Other than potential meter damage, doesn't usually cause meter problems

Transient Caused by Capacitor Bank Switching

- Voltage Regulation
 - Long term variations in voltage
 - ANSI C84.1 defines two <u>service</u> ranges
 - Range A Normal conditions
 < 600 VAC ±5.0% at service entrance
 > 600 VAC -2.5% +5.0%
 - Range B Short durations or unusual conditions
 -8.3% +5.8%
 - Not a metering accuracy issue

- Voltage Regulation
 - Long term variations in voltage
 - ANSI C84.1 defines two <u>utilization</u> ranges
 - Range A Normal conditions
 < 600 VAC -10% +4.2%
 > 600 VAC -10% +5.0%
 - Range B Short durations or unusual conditions
 -13.3% +5.8%
 - Not a metering accuracy issue

If we provide service that meets the SERVICE range requirement the customer utilization range requirement should be met.

Voltage regulation issue created by overloaded circuit.

- Frequency Stability
 - Fluctuations are generally small and slowly varying averaging to zero
 - Western Grid Data
 - Normal: ±0.015 Hz
 - Sudden Changes: ±0.100 Hz (several times a month)
 - Major Breakup: ±0.750 Hz (once every few years)
 - Can potentially cause metering issues, especially for VAR measurement

- Harmonics
 - Repetitive contamination of the voltage or current waveform
 - Generated by non-linear loads. Voltage harmonics are a reflection of the non-linear load on a distribution system with finite impedance
 - Produce a variety of infrastructural problems
 - Generate system losses
 - Can result in metering errors and disputes

Harmonics Theory

- Basic Harmonic Theory
 - Harmonics describe disturbances which repeat every cycle for a significant number of cycles
- Engineers use Fourier notation to describe harmonic waveforms

$$V(t) = \sqrt{2} \sum_{n=1}^{\infty} \left(V_n Sin(n \omega_0 t - \alpha_n) \right)$$

Harmonics Theory

Harmonics Theory

Even a square wave can be represented as a series of harmonics.

Focus on Harmonics

- Where do harmonics come from?
 - Non-linear loads at the customer's site
 - Coupling from loads at other sites sharing the distribution system
 - One customer's harmonic current load is converted into voltage harmonics at other customer's sites by the impedance of the system

Past Harmonic Sources

SOURCE	TYPE	LEVEL		
Transformer Saturation Energization 	Current Harmonics 3,5,7… & 2,4…	1 to 85%		
Arc Furnace Welders	Voltage Harmonics 5 & 7	2.5 to 8%		
Line Commuted Converters	Volt. & Cur. Harmonics H = np ± 1	10 to 30%		
Static VAR Compensators	Current Harmonics H = np ± 1	2 to 4%		
Saturable Reactors	Current Harmonics 3,5,7…	1 to 8%		

New Harmonic Sources

SOURCE	TYPE	LEVEL		
Fluorescent Lighting	Current Harmonics 3,5,7… up to > 49	> 400%		
Electronic Power Supplies Especially Computers	Current Harmonics 3,5,7 up to > 25	>100%		

Green 60W Incandescent Bulb

Active Power = 41W Reactive Power = <1 VAR Apparent Power = 41VA Current THD = 1.5%

60W Equivalent CCFL Bulb

Active Power = 14 W Reactive Power = 6 VAR Apparent Power = 16 VA Current THD = 88%

60W Equivalent LED Bulb

Waveform Analysis BETA TEST - p8.96M/v6.81M/c#336.98K - Selected Site: None

Active Power = 11 W Reactive Power = 4 VAR Apparent Power = 12 VA Current THD = 111%

Laptop Computer Power Supply

Active Power = 35 W Reactive Power = 6 VAR Apparent Power = 37 VA Current THD = 144%

• Harmonics can be grouped into "sequences" which help us understand their effects.

Name	F	2 nd	3rd	4 th	5 th	6 th	7 th	8 th	9 th
Freq	60	120	180	240	300	360	420	480	540
Seq	+	-	0	+	-	0	+	-	0

N	lame	F	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th	9 th
	Freq	60	120	180	240	300	360	420	480	540
	Seq	+	-	0	+	-	0	+	-	0

Positive (+)

 If fundamental rotation is ABC then positive (+) sequence harmonics have ABC rotation

Name	F	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th	9 th
Freq	60	120	180	240	300	360	420	480	540
Seq	+	-	0	+	-	0	+	-	0

Negative (-)

 If fundamental rotation is ABC then negative (-) sequence harmonics have CBA rotation

Name	F	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th	9 th
Freq	60	120	180	240	300	360	420	480	540
Seq	+	-	0	+	-	0	+	-	0

ZERO (0)

 If fundamental rotation is ABC then zero (0) sequence harmonics have NO rotation

- Positive (+)
 - Heating of conductors and transformers
- Negative (-)
 - Heating of conductors and transformers
 - Tries to make motors run backwards
- Zero (0)
 - Results in neutral currents which can be larger than phase currents

- UPDATE: Latest ANSI C12 standards require meters to be tested under harmonic conditions
 - Six harmonic waveforms that must be tested on all new meters
 - Preliminary testing of proposed waveforms show most meters do well, but a few do very poorly

Waveform #1 - 90 Degree Phased Fired Waveform Typical for a light dimmer set to 50%

Waveform #2 - Quadriform Waveform Switched Load Device

Waveform #3 - Peaked Waveform Switching Power Supply

Waveform #4 - Pulse Waveform Switching Power Supply

Waveform #5 – Multiple Zero Crossing Current Waveform

Waveform #6 – Multiple Zero Crossing Voltage Waveform

- Primarily affect the calculation of VA, VAR and Power Factor
 - No ANSI standard for these calculations at this time
 - Different manufacturers use different methods and definitions.
 - Most manufacturers allow the user to make several choices for each
 - Differences of over 50 percent in answers can occur in high harmonic situations

- Sub Harmonics (Freq < Fundamental)
 - Not addressed in any standard
 - Not measured by FFT based approaches
- Non-Harmonic High Frequency Disturbances
 - Not addressed in any standard
 - Not measured by FFT based approaches
- Sudden Load Changes
 - Not addressed in any standard
 - Not measured by FFT based approaches

Harmonic Compensation

- Harmonics can be compensated for at the customer's facility
- Solution must be tailored to the problem
- Examples of solutions:
 - Active Filter mirror image of harmonic
 - Tuned Filter effective but expensive
 - Zig zag transfomer reduces 3rd harmonics in neutral
- There is no "one size fits all" solution

IEEE Power Quality Standards

- SCC-22 Power Quality Standards Coordinating Committee
- 1159: Monitoring Electric Power Quality
 - 1159.1: Guide for Recorder and Data Acquisition Requirements
 - 1159.2: Power Quality Event Characterization
 - 1159.3: Data File Format for Power Quality Data Interchange
- P1564: Voltage Sag Indices
- 1346: Power System Compatibility with Process Equipment
- P1100: Power and Grounding Electronic Equipment
- 1433: Power Quality Definitions
- P1453: Voltage Flicker
- 519: Harmonic Control in Electrical Power Equipment
- P519A: Guide for Applying Harmonic Limits on Power Systems

IEC Power Quality Standards

- 61000-1-X Definitions and methodology
- 61000-2-X Environment
- 61000-3-X Limits
- 61000-4-X Test and measurements
- 61000-5-X Installation and mitigation
- 61000-6-X Generic immunity and emissions standards
- Working Groups and Committees
 - SC77A Low Frequency EMC Phenomena
 - TC77/WG1 Terminology
 - SC77A/WG1 Harmonics and other low frequency disturbances
 - SC77A/WG6 Low frequency Immunity Tests
 - SC77A/WG2 Voltage fluctuations and other low frequency disturbances
 - SC77A/WG9 Power Quality measurement methods

Questions? Comments? Want a copy of this presentation? Go to powermetrix.com/presentations/

Thank you for your time!

