#### **Introduction to Watthour Meter Testing**



John Jones Global Solutions Director

10737 Lexington Drive Knoxville, TN 37932 Phone: (865) 966-5856 www.powermetrix.com



### **Focus of this Presentation**

- Why do electric meters need to be tested?
- What tests are run on a meter?
- What equipment is needed for testing meters?
- How are the tests run?



#### Why do we test electric meters?

• The meter is the "cash register" – the last stop between the billing department and the customer.

• Meter accuracy must be established to ensure fair billing to the customer and the utility.



#### Who establishes the tests?

- Meter testing guidelines are taken from ANSI C12.1-2014 American National Standard for Electric Meters – Code for Electricity Metering (go to www.ansi.org for more information)
- Section 5 of C12.1 covers "Standards for New and In-Service Performance"
- ANSI only provides guidance, but does not enforce standards
- Final testing guidelines are established by the PSC, local government, or the utility



#### What tests are run on a meter?

• In the Lab – ANSI Meter Test

| Test         | Voltage | Current                 | PF  |
|--------------|---------|-------------------------|-----|
| Full Load    | Rated V | Rated Test<br>Amps (TA) | 1.0 |
| Power Factor | Rated V | Rated TA                | 0.5 |
| Light Load   | Rated V | 10% of TA               | 1.0 |

- Meter test boards for the lab generate ideal voltage and current to run the meter
- An electric power standard is used to verify the meter's accuracy

### **ANSI Meter Test Example**



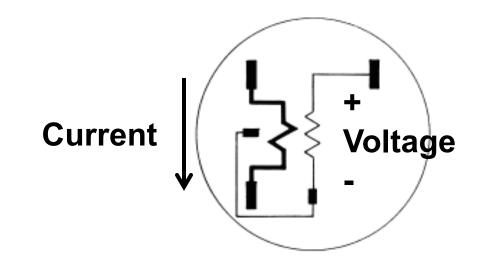


#### ANSI Meter Test Example

| CL200, 120 TO 480V AWY or 4WD, 60Hz |     |      |  |
|-------------------------------------|-----|------|--|
| FM 16S (15S 14C) WOW                | Kh  | 21.6 |  |
| FM 16S (15S, 14S) Watthour Meter    | P/R | 24   |  |
| R2.7-114327GK-023EBC                | TA  | 30 A |  |

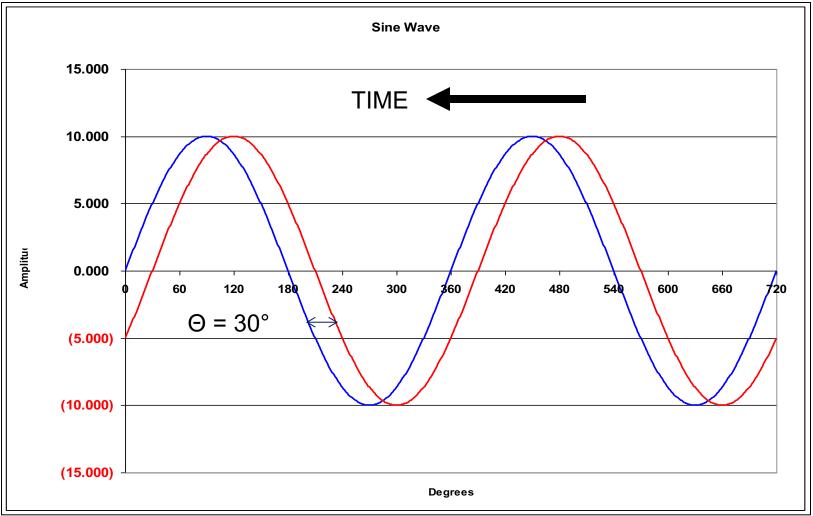
| Test         | Voltage | Current | PF  |
|--------------|---------|---------|-----|
| Full Load    | 120V    | 30A     | 1.0 |
| Power Factor | 120V    | 30A     | 0.5 |
| Light Load   | 120V    | 3A      | 1.0 |




#### What tests are run on a meter?

- In the Field:
  - Customer load using the customer's actual voltage and current
  - Phantom load using current (and possibly voltage) generated from a load box
  - Phantom load tests are typically based on the ANSI meter test




# How does a meter measure power?

The meter has two stators – a voltage stator and a current stator. Power = Voltage x Current x Power Factor Power Factor =  $\cos \theta$ 





#### Phase and Power Factor



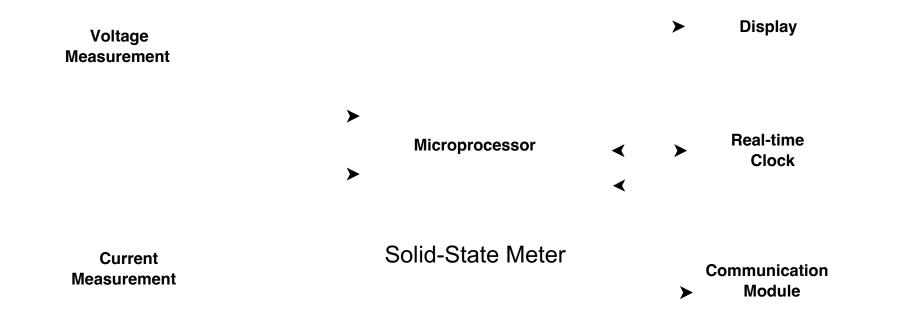
Current is lagging Voltage by 30°



#### **Power Factor Definition:**

Power Factor represents the ratio of active power (Watts) to the total power (VA) in a system. It is also equal to the cosine of the phase angle for a sinusoidal system.

It is a representation of the percentage of useful work being done.




# How does a meter measure power?

- Mechanical meters Voltage and current generate a magnetic field that turns a gear
- Solid-state meters Voltage and current are digitized and processed by a microprocessor



## How does a meter measure power?





### **Energy – What we sell!**

Electricity meters measure energy in Watt-hours

Energy = Power x Time

For test purposes, meters output a pulse to indicate how much energy how been measured



## **Energy Pulse Output**

- On a solid state meter, a pulse (IR or visible light) is emitted to indicate how much energy has been consumed
- The light pickup is used by meter test equipment to make precise accuracy measurements







## What is Kh?

 The "Kh" on the meter indicates how much energy is indicated per pulse

 On a mechanical meter, the "Kh" is the energy in Watthours equal to one revolution of the disc



### What is Kh?

 Example: Kh = 21.6 means one pulse per 21.6 Watt-hours

 CL200, 120 TO 480V, #WY or 4WD, 60Hz
 Kh 21.6

 FM 16S (15S, 14S)
 Watthour Meter
 P/R 24

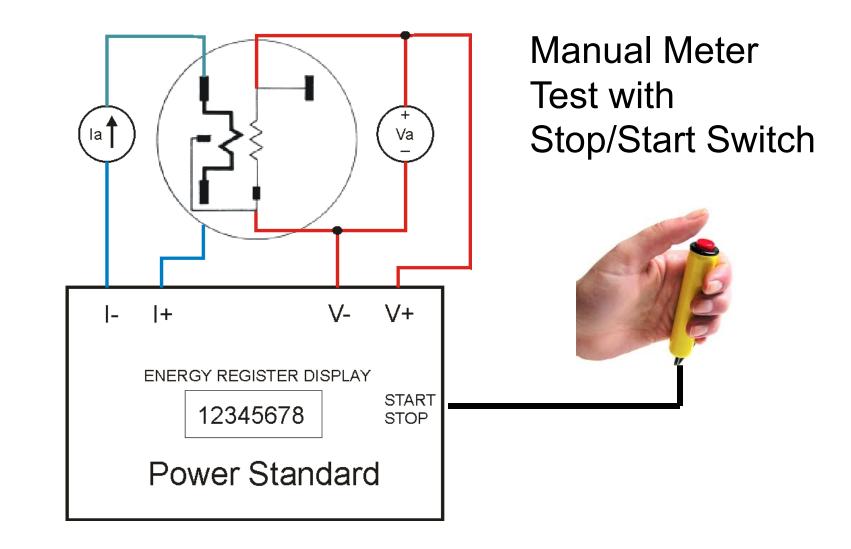
 R2.7-114327GK-023EBC
 TA 30 A



## How is a meter test run? The Meter's Energy is given as

Em= Kh x (# of meter pulses or disk revolutions)

Example: K<sub>h</sub> = 21.6 # of pulses = 3 E<sub>m</sub> = 21.6 \* 3 = 64.8 Wh




#### How is a meter test run?

- A meter is tested against an electric power standard
- The standard measures power the same way as the meter, but has an accuracy 4 to 10 times greater than the meter
- The power standard measures the same voltage, current, and phase as the meter



#### How is a meter test run?





#### **Power Standard Pulse Constant**

- The standard has a "pulse constant", Ks.
- The "pulse constant" is given in Watt-hours per pulse
- The energy measured by the standard is

$$E_s = K_s x$$
 (# of pulses)



### **Meter Registration Test**

% Registration = 
$$\frac{E_M}{E_s} x 100\%$$

where

 $E_{\rm M}$  is the energy measured by the meter  $E_{\rm S}$  is the energy measured by the standard

Registration is given as a percentage:

- 100% is perfect registration
- <100% is in the customer's favor</p>
- >100% is in the utility's favor



### **Meter Registration Test**

*Example:* 

 $K_S = 0.00001 Wh/pulse$ # of standard pulses = 6,475,000  $E_S = 0.00001 x 6,475,000 = 64.75 Wh$ 

$$K_{M} = 21.6 Wh/pulse$$
  
# of meter pulses = 3  
$$E_{M} = 21.6 x 3 = 64.8 Wh$$
  
% Registration =  $\frac{E_{M}}{E_{s}} x100\%$ 



#### **Meter Registration Test**

*Example:* 

 $E_S = 0.00001 x 6,475,000 = 64.75 Wh$ 

 $E_M = 21.6 \ x \ 3 = 64.8 \ Wh$ 

$$\% Registration = \frac{64.8}{64.75} \times 100\%$$

% *Registration* = *100.08%* 



## Lab Meter Testing

Equipment Required:

- Load Box
- Electric Power Standard
- Meter Socket
- Lab testing often use ideal conditions
- Modern load boxes can simulate real-world conditions (harmonics)

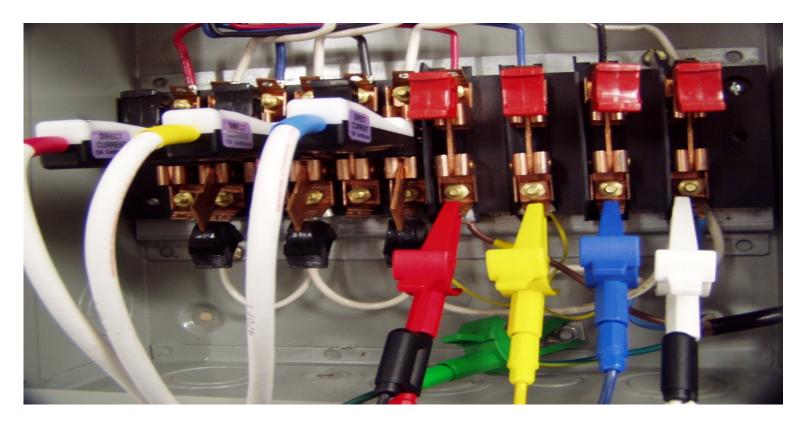


## Lab Meter Testing



**Bench Top Tester** 

- Zero-insertion force socket
- Load Box
- Integrated Standard
- Automatic meter registration calculation




#### **Field Test Connections**





#### **Field Test Connections**



Current Connections Duckbill Connectors Voltage Connection Alligator Connectors



#### **Types of Field Meter Tests**

#### **Customer Load Test**

Real - World Conditions Voltage and Current Harmonics Current and Phase Angle Balance

#### **Phantom Load Test**

Ideal Current and Voltage Waveforms ANSI Full Load, Power Factor & Light Load Custom Test Sequences for Special Applications



#### **Customer Load Meter Test**

P Customer Load Test ResultsTA TEST - p21.14M/v19.00M/c#275.08K - Selected Site: DELETE

Customer Load Meter Test Wh Test

#### % Registration 100.015

| Test       | Info    |      | Sys Info |
|------------|---------|------|----------|
| Time(sec)  | 151.427 | Wh   | 17.9973  |
| Time Left  | 0.000   | VAh  | 24.8777  |
| Pulses Exp | 9.9985  | VARh | 4.4997   |
| Pulses Act | 10.0000 | V    | 119.259  |
| Meter PF   | 0.6416  | Ι    | 1.6524   |





#### Phantom Load Meter Test

🦻 Phantom Load Results

Selected Site: TEST

| FL |   | 99.9 | <del>)</del> 54 |
|----|---|------|-----------------|
|    | _ | <br> |                 |

| Phase | Voltage | Current | PF    | Time | Pulses |  |
|-------|---------|---------|-------|------|--------|--|
| All   | 238.54  | 4.995   | 0.868 | 4.18 | 2      |  |

#### PF

#### 99.913

| Phase | Voltage | Current | PF    | Time | Pulses |
|-------|---------|---------|-------|------|--------|
| All   | 238.54  | 4.995   | 0.441 | 8.24 | 2      |

| LL    |         |         |       | 99.9  | 966    |
|-------|---------|---------|-------|-------|--------|
| Phase | Voltage | Current | PF    | Time  | Pulses |
| All   | 238.51  | 0.497   | 0.868 | 42.03 | 2      |

#### Page 1 / 1

| Retest Retest All Do |
|----------------------|
|----------------------|



Stick around for a Live Meter Test Demonstration!





#### Questions? Comments? Want a copy of this presentation? Go to powermetrix.com/presentations/

Thank you for your time!



