

Steve Hudson, P.E.

VP of Hardware Engineering

10737 Lexington Drive Knoxville, TN 37932 Phone: (865) 966-5856

www.powermetrix.com

AC Theory Review – Sine Wave

$$V = V_{pk} Sin(2\pi ft - \theta)$$

Where Vpk is peak voltage f is frequency t is time θ (theta) is phase

$$V_{pk} = \sqrt{2}V_{rms}$$

$$V = \sqrt{2}V_{rms}Sin(2\pi ft - \theta)$$

$$V_{rms} = 120V$$

$$V_{pk} = 169V$$

$$f = 60Hz$$

$$\theta = 0^{\circ}$$

Phase Relationship

Single Phase - Voltage Plot

Two Phases - Voltage Plot

Three Phase - Voltage Plot

Three Phase Power

At the Generator

Three voltage vectors each separated by 120°.

Peak voltages essentially equal.

Most of what makes three phase systems seem complex is what we do to this simple picture in the delivery system and loads.

Three Phase Power Basic Concept – Phase Rotation

Phase Rotation:

The order in which the phases reach peak voltage.

There are only two possible sequences:

A-B-C (previous slide)

C-B-A (this slide)

Phase rotation is important because the direction of rotation of a three phase motor is determined by the phase order.

Phasors and Vector Notation

 Phasors are a graphical means of representing the amplitude and phase <u>relationships</u> of voltages and currents.

Three Phase Power Phasors and Vector Notation

 As stated in the Handbook of Electricity Metering, by common consent, counterclockwise phase rotation has been chosen for general use in phasor diagrams.

Three Phase Power Phasors and Vector Notation

- The phasor diagram for a simple 3-phase system has three voltage phasors equally spaced at 120° intervals.
- Going clockwise the order is A B C.

3 Phase, 4-Wire "Y" Service

0° = Unity Power Factor

Three Voltage Phasors

- 120° Apart
- Three Current Phasors
- Aligned with Voltage at PF=1

2 Phase, 3-Wire "Y" Service

"Network Connection"

Single phase variant of the service.

Two voltage sources with their returns connected to a common point.

Provides 208 rather than 240 volts across "high side" wires.

2 Phase, 3-Wire "Network" Service

- Two Voltage Phasors
- 120° Apart
- Two Current Phasors
- Aligned with Voltage at PF=1

3 Phase, 3-Wire Delta Service

Common service type for industrial customers. This service has NO neutral.

- •Voltages normally measured relative to phase B.
- •Voltage and current vectors do not align.
- •Service is provided even when a phase is grounded.

3 Phase, 3-Wire Delta Service

Resistive Loads

- Two Voltage Phasors
- 60° Apart
- Two Current Phasors
- For a
 resistive
 load one
 current
 leads by 30°
 while the
 other lags
 by 30°

3 Phase, 3-Wire Delta Service

Understanding the Diagram

3 Phase, 3-Wire Delta Service Understanding the Diagram

3 Phase, 3-Wire Delta Service Resistive Load

- Two Voltage Phasors
- 60° Apart
- Two Current Phasors
- For a
 resistive
 load one
 current
 leads by 30°
 while the
 other lags
 by 30°

3 Phase, 4-Wire Delta Service

Common service type for industrial customers. Provides a residential like 120/240 service (lighting service) single phase 208 (high side) and even 3 phase 240 V.

- •Voltage phasors form a "T" 90° apart
- Currents are at 120° spacing
- •In 120/120/208 form only the "hot" (208) leg has its voltage and current vectors aligned.

3 Phase, 4-Wire Delta Service

Resistive Load

- Three Voltage Phasors
- 90° Apart
- Three Current Phasors
- 120° apart

Always know what the ideal vector looks like

Use the reference vector on your analyzer

Look for deviations from the norm

Low PF on C Phase

• W = V * I * PF

 Low power factor will lead to lower active power (Watts) measurement on C phase

 May need to impose a power factor penalty or add capacitance to correct power factor

Restart

Leading Phase Angle

 Capacitor bank switched in causes leading phase angle

 Not a problem unless there is excessive capacitance leading to low power factor

Troubleshooting with Vectors What's Wrong?

Check the Primary!

Backwards CT = ??? \$\$\$

kW = Va * Ia * Cos θ + Vb * Ib * Cos θ + Vc * Ic * Cos θ

 Cos 180 on phase A makes this NEGATIVE power!

 Reading will be 66% low assuming a balanced current load!

All current vectors reversed

All CTs are reversed

Test equipment may be backwards

Perfectly normal vector for a solar installation

POWERMETRIX

Low Secondary Current

Check for shunted CT

Test switch may be shunted

 CT wiring is bad. Look for set screws on the wire insulator.

• 33% loss of revenue

Low Voltage

Check for shorted or overburdened
 PT

Test switch may be open or faulty

Look for set screws on the insulator

• 33% loss of revenue

What's Wrong?

What's Wrong?

- Primary currents look equal
- Secondary current on B is low
- What is the problem?

Troubleshooting with Vectors What's Wrong?

Incorrectly sized CT that was labeled improperly!

Troubleshooting with Vectors What's Wrong?

Phase A & B CTs swapped.

Swapped Wire = ??? \$\$\$

kW = Va * Ia * Cos θ + Vb * Ib * Cos θ + Vc * Ic * Cos θ

 Cos 120 on phase A and B makes this NEGATIVE power!

 Reading will be 0W assuming a balanced current load!

Questions? Comments?
Want a copy of this presentation?
Go to

powermetrix.com/presentations/

Thank you for your time!

